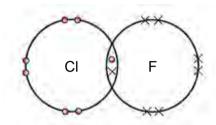


GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2014


PMT

CH2

Section A

Q.1	С				[1]

- Q.2 (a) $Cl^{\delta_+} F^{\delta_-}$ Electronegativity decreases down the group / fluorine is more electronegative (than chlorine) / chlorine is less electronegative (than fluorine) [1]
 - (b) [1]

Q.3	It has	a full / stable (outer) electron shell	[1]
Q.4	(a)	$C_6H_{12}Br_2$	[1]
	(b)	Elimination	[1]
Q.5	Temp	perature 200-300 (accept 470-570K)	
	Press	sure 60-70 (accept 6000-7000 kPa)	[1]
Q.6	Hex-2	2-ene (ignore references to cis/trans/ <i>E/Z</i>)	[1]
Q.7	(a)	A process of bond breaking where the two electrons (of the covalent bond) go to one of the two atoms in the bond	[1]
	(b)	$(CH_3)_3C^+$ and CI^- (accept $(CH_3)_3C^-$ and CI^+)	[1]

Total Section A [10]

Section B

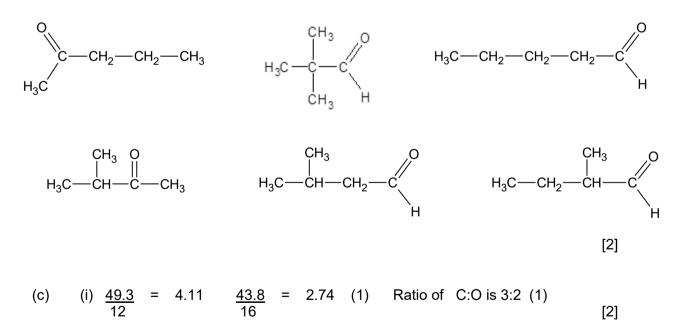
Q.8	(a)	In SO_2 the oxidation number of sulfur is +4					
		In SO_2F_2 the oxidation number of sulfur is +6 (1)					
		Increase in (positive) oxidation number is oxidation (1)					
	(b)	The electrons in the bonds between sulfur and fluorine and sulfur and oxygen take up the position of minimum repulsion / maximum separation [1]					
	(c)	(i) A lone pair donor / a species that seeks out a relatively positive s	ite [1]				
		(ii) eg H ₂ O / OH ⁻ / Cl ⁻ (or other halogen) / CN ⁻ / correct formula of an amine	[1]				
		(iii) A shift of two electrons	[1]				
	(d)	SO_2F_2 + $2Ca(OH)_2 \rightarrow CaSO_4$ + CaF_2 + $2H_2O$					
		[(1) for correct formulae, (1) for balancing if formulae correct]	[2]				
	(e)	(i) UV radiation (1) is able to break the C—CI and C—Br bonds (1) giving radicals (1) that attack / breakdown the ozone layer	[3]				
		(ii) The S—F bond in sulfuryl fluoride is too strong to be broken by U radiation	V				
			[1]				

Total [12]

PMT

Q.9 (a) (i) 165 ± 5 °C

(ii)


- (ii) As the number of carbon atoms in the acids increase the boiling temperature increases (1)
 This is due to an increase in induced dipole-induced dipole / Van der Waals forces (1) between molecules (1)
- (iii) As the molecules increase in size the relative importance of the —COOH group decreases (1) There is therefore less of a tendency to hydrogen bond with water (becoming less soluble) (1) [2]

(b) (i) Acidified (potassium) dichromate (accept
$$H^+$$
, $Cr_2O_7^{2-}$) /
Acidified (potassium) manganate(VII) (accept H^+ , MnO_4^-) [1]

[1]

[1]

- (iii) I 0.050 [1]
 - II 0.025 [1]
 - III $0.025 \times 186 = 4.65$ (g) [1]
- (iv) Any 2 of the following:

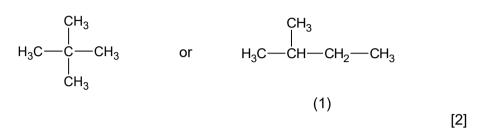
(ii) There are four oxygen atoms per molecule ∴ 6 carbon atoms (and 4 oxygen atoms)

$$\therefore$$
 n = 6 – 2 in the acid groups \therefore n = 4 [1]

Total [16]

Q.10	(a)	(i)	Number of moles of HCl = $\frac{80 \times 0.20}{1000}$ = 0.016 (1)	
			Number of moles of calcium needed = 0.008 (1)	
			Number of moles of calcium actually used = $\frac{0.40}{40}$ = ~ 0.010) (1)
			(∴calcium is present in excess)	
			[Calculation could be carried out in grams]	[3]
		(ii)	gas bubbles / effervescence / some calcium 'dissolves' / colourless solution produced	[1]
	(b)	of E in solution at 0 °C = $0.13 \times 2 = 0.26$ g (1)		
		∴ Qı	uantity precipitated = 1.50 – 0.26 = 1.24 g (1)	[2]
	(c)	(i)	Brick red / orange-red	[1]
		(ii)	Cream precipitate (accept off-white precipitate)	[1]
		(iii)	Ag^{+} + Br^{-} \rightarrow $AgBr$	[1]
		(iv)	Red / brown solution	[1]
		(v)	Calcium bromide is an ionic compound (1) and contains Ca^{2+} and Br^{-} ions (1) Chlorine reacts with the bromide ions in a redox / displacement reaction (1)	
			Chlorine is a more powerful oxidising agent / has a greater affinit electrons than bromine (1)	y for
			$2Br^{-} + Cl_2 \rightarrow Br_2 + 2Cl^{-}$ (1)	[5]
		QWC:	ensure that text is legible and that spelling, punctuation and	[1]

G: ensure that text is legible and that spelling, punctuation and grammar are accurate so that the meaning is clear [1]


Total [16]

Q.11	(a)	lodine contains weak van der Waals forces / bonds between each molecule (1) Less energy is needed to overcome these weaker forces (1) * Diamond contains strong covalent bonds between each atom (1) and more energy is needed to overcome these 'bonds' (1) * * alternative marks			
		Neither iodine nor diamond contain free / delocalised electrons to carry the charge (necessary for them to conduct electricity) (1)	ne [4]		
		QWC: organise information clearly and coherently, using specialist vocabulary when appropriate	[1]		
	(b)	K^{\dagger} and I^{-} correctly given (1) and in their correct places on the diagram (1)	[2]		
	(c)	An excess / stoichiometric / 0.05 mol (1) of potassium sulfate (aq) is adde to the barium chloride solution Mixture is stirred (1) * and then filtered (1) Precipitated barium sulfate is then washed with distilled water (1) and dried (1) * * alternative marks	ed [4]		
		QWC: Select and use a form and style of writing appropriate to purpose and to complex subject matter	[1]		

Total [12]

Q.12 (a) (i) Petroleum is heated/evaporated (1) Fractions condense at different temperatures / separated into fractions with different boiling temperatures (1)

Branched chain therefore

(ii)
$$C_9H_{20} \rightarrow CH_4 + C_4H_6 + C_4H_{10}$$
 [1]

[1]

(iii)
$$Cl_{\bullet} + CH_{4} \rightarrow \bullet CH_{3} + HCl$$

[or $\bullet CH_{3} + Cl_{2} \rightarrow CH_{3}Cl_{} + Cl_{\bullet}$] [1]

(ii) Aqueous sodium hydroxide [1]

[2]

Total [14]

Total Section B [70]

PMT